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Abstract. The Heidelberg-Moscow Experiment is presently the most sensitive experiment looking for neu-
trinoless double-beta decay. Recently the already very low background has been lowered by means of a
Digital Pulseshape Analysis using a one parameter cut to distinguish between pointlike events and multi-
ple scattered events. To use all the information contained in a recorded digital pulse, we developed a new
technique for event recognition based on neural networks.

1 Introduction

The question of a nonvanishing neutrino mass is still one
of the most outstanding open problems in modern physics.
Especially after the latest striking hints for neutrino oscil-
lations from the Super-Kamiokande experiment [1] it has
become very important to verify these results indepen-
dently. Neutrinoless double-beta (0νββ) decay, which vi-
olates Lepton-number and B-L conservation by two units,
is one of the most promising tools for the search of a fi-
nite neutrino mass and some other physics beyond the
standard model [2]. Furthermore it seems to be the only
possibility to distinguish between the Majorana- and the
Dirac-nature of the neutrino. If 0νββ-decay is observed
neutrinos have to be of Majorana-type and have a fi-
nite mass. The atmospheric neutrino problem confirmed
by the Super-Kamiokande collaboration [1] has brought
degenerate neutrino models back to attention again [3],
where all neutrinos have a mass in the order of O(eV).
The newest generation of 0νββ-decay experiments, espe-
cially the Heidelberg-Moscow-Experiment [4] started al-
ready now to test this mass range.

2 The Heidelberg-Moscow-Experiment

The Heidelberg-Moscow-Experiment is presently the
most sensitive experiment looking for 0νββ-decay [4]. Out
of 19.2 kg enriched 76Ge five p-type High-Purity Germa-
nium (HPGe) crystals were grown, which are now oper-
ated as p-type detectors in the Gran Sasso Underground
Laboratory with an active mass of 10.96 kg in an ex-
tremely radiopure surroundings. The experiment has a

background rate of 0.2 counts/(kg keV y) in the energy re-
gion between 2000 keV and 2080 keV, where the expected
signal, a sharp peak at 2038.56 keV (the Q-value of ββ-
decay) lies. Since 1995 an additional background reduc-
tion has been achieved through the use of Digital Pulse-
shape Analysis (PSA). Due to the fact that the shape
of the detected pulse is dependent on the type of inter-
action a distinction between multiple scattered Compton
events and single interaction events is possible. A 0νββ-
decay event would appear as a Single Site Event (SSE),
since the mean free path of the two electrons emitted by
the decay is smaller than the time resolution of the de-
tector allows to distinguish due to the low drift velocities
of the electron-hole pairs. This means that Multiple Site
Events (MSE) in the energy region of 0νββ-decay can be
regarded as background. To distinguish between the two
interaction types a one-parameter method was developed
at that time, based on the fact that the time structure of
the pulse shapes in Germanium detectors are mainly de-
pendent on the locations of the various events of a count
within the HPGe-crystal. For MSE’s one therefore expects
a broader pulse in time than for SSE’s since the initial lo-
cations of the electron-hole pairs are distributed over a
larger area of the crystal and the overall detection time
therefore increases. With this method a reduction of the
background by a factor of three in the area of the expected
signal could be reached [5,6].

Nevertheless a large amount of information is neglected
with this method since only one parameter serves as the
distinguishing criterion. Furthermore the method relies on
a statistical correction of the measured SSE pulses since
the efficiency of the method is substantially smaller than
100% resulting in a loss of information about the single
events. For this reason we developed a new method based
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Fig. 1. Design of a feed forward Neural Network with three
layers: one input layer, one hidden layer and one output layer.
The σ at each knot represents the neuron’s activation function
which is of sigmoid type in our example

on neural networks to use as much information as possible
from the recorded pulse shapes and to avoid statistical
treatment of the obtained data.

3 Neural networks

Neural Networks are nowadays used in a wide vari-
ety of applications like pattern-, image- and videoimage-
recognition. Since in the case of PSA the discrimination
technique relies on a sort of pattern recognition it seemed
consequent to base a new PSA-technique on this method.
In contrast to the old method, where only one parameter
was used as the distinguishing criterion, all the informa-
tion obtained by the measurement about the time struc-
ture of the pulse is fed to the neural networks in order to
distinguish between SSE’s and MSE’s.

Typically a network is divided into processing units,
which are further divided into single neurons. Each unit
recieves signals from the previous level (i.e. from the neu-
rons in the unit) and computes an output, which is then
passed further to the next unit (i.e. to the neurons of the
unit). The schematic action of such a feed forward network
is depicted in Fig. 1.

A typical neural network consists of three layers: the
input layer, the hidden layer and the output layer. It has
been shown that such a network suffices to approximate
any function with a finite number of discontinuities to
arbitrary precision if the activation function of the hidden
unit neurons are nonlinear [7].

If one has digitized information in an array (in our case
it is the time evolution of the measured current behind
the preamplifier, i.e. it is one-dimensional), the entries xj
can be passed to the input layer to ’activate’ the neurons
through the activation function, typically of the sigmoid
form

F(xj) = yi(xj) =
1

1 + e−xj
. (1)

Each neuron then passes its activation value yi to all the
neurons in the hidden layer after multiplying it with a
weight factor, so that the input to the neurons in the next
layer is given by:

xhj =
∑
i

wijyi + θj (2)

where θj is a threshold specific to the layer and wij is the
corresponding weight between the i-th neuron in the input
layer and j-th neuron in the hidden layer. Again the output
of the neuron is calculated through the activation function
given in (1) and passed to the neurons of the next layer.
Finally one obtains the output signals from the activation
of the output neurons. Often (like in this analysis) the
output layer consists of only one neuron returning a value
between 0 and 1 thus deciding whether the data passed to
the input layer belongs to a signal of type A) or B).

However the network has to be configured in order to
be able to distinguish reasonably between two types of
input patterns. This is mostly done by a sort of training
process. If one has a library of input patterns, these can be
passed to the network. After the input pattern has been
applied and the output has been calculated, the connec-
tions between the neurons are adjusted according to the
generalized delta rule:

∆wij = γδjyi, (3)

where γ is the learning rate, yj is the activation of the
neuron due to the given input pattern and δk is an error
signal which in our case (sigmoid activation function) is
given for the output layer by

δo = (do − yo)F ′(xo) = (do − yo)yo(1− yo) (4)

and by

δh = F ′(xh)
N0∑
o=1

δowho = yh(1− yh)
N0∑
o=1

δowho (5)

for the hidden layer. Here F ′ corresponds to the first
derivative of the activation function, d0 is the expected re-
sult of the output neurons and No is the number of output
neurons. Often, like in this analysis, a momentum term is
used in the learning process to avoid oscillations in the
training procedure:

∆wjk(t+ 1) = γδkyj + α∆wjk(t), (6)

where t is the presentation number and α is a constant
representing the effect of the momentum term.

After a certain number of these training procedures
the network ’learns’ the patterns of the types of input
information and the output of the network results in a
value close to zero for a pattern of type A) and in a value
close to one for a pattern of type B).

For a general introduction to Neural Networks see for
example [8].
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Fig. 2. Expected result of PSA from the sim-
ulation of the 228Th- calibration spectrum.
Upper panel: Simulated spectra of all events
(open histogram) and SSE events only (shaded
histogram). Lower panel: Simulated ratio of
SSE’s in the spectrum as a function of energy.
In the energy region of 0νββ-decay a reduction
by a factor of ∼2.8 can be expected

4 Digital pulsform analysis with Neural
Networks

In order to perform PSA a sufficiently large library of
known reference pulses has to be collected for the training
process. A reliable source of the two different kinds of
pulses is needed for this reason. It is well known that high
energetic (E > 500 keV) total absorption peaks consist
mainly of Compton scattered events (see. [9]). The amount
of MSE’s in these peaks in general is not less than 80%.
In contrast to this, Double-Escape peaks (pair production
followed by the annihilation of the e+ and the escape of
both 511 keV γ’s) consist of SSE’s only, since the detected
particle in this case is a single electron with energy

EDE = (E0 − 2× 511 keV ), (7)

whose dissipation length again is smaller than the time
resolution of the detector allows to resolve. Only the
Compton background from higher energetic peaks in this
area contributes to a contamination of MSE’s in the
peak region of the Double-Escape line. Using a 228Th-
calibration source, the Double-Escape line of the to-
tal absorption peak at 2614.53 keV with an energy of
EDE=1592.5 keV can be used for the SSE sample. To
avoid systematic effects in the training process, a total
absorption peak with a similar energy should be used for
the MSE sample. The peak at 1621 keV from the 228Th-
daughter nuclide 212Bi seemed appropriate for this pur-
pose.

5 Simulation of PSA

To test the efficiency and the reliability of the new method
we performed simulations of calibration measurements of
the Heidelberg-Moscow-Experiment. It is especially im-
portant to check for a possible energy dependence of the

method since the energy of the training pulses (∼ 1.6
MeV) does not coincide with the energy region of the ex-
pected 0νββ-decay signature (2038.5 keV). For this pur-
pose we used the GEANT3.21 Monte-Carlo code [10] ex-
tended for low energetic decays. The geometry of the
experiment and the library of low energetic decays was
programmed and successfully tested in earlier works [11,
12]. The code was further extended to distinguish be-
tween multiple and single interaction events [13]. In Fig. 2
the simulated spectra of a calibration measurement with
a 228Th source with the whole setup of the Heidelberg-
Moscow-Experiment and the resulting expected ratio of
SSE’s in the spectrum are shown. In the energy region of
the 0νββ-decay between 2000 keV and 2080 keV a reduc-
tion factor of ∼2.8 is expected through the use of PSA.

6 Network results

We recorded ∼ 20.000 events of each kind (1592 keV
Double-Escape line and 1621 keV total absorption
peak) with every detector of the Heidelberg-Moscow-
Experiment in the Gran Sasso Underground laboratory.
After arranging these pulses in a library, they were used to
train the networks. Since the Pulseshapes are dependent
on detector parameters like size and form of the crystal,
an own network had to be configured for every detector
used in the PSA.

The Neural Networks used in this analysis consisted
out of three layers: An input layer out of 180 neurons, a
hidden layer with 90 neurons and an output layer with a
single neuron.

To check the network also during the training process,
we monitored the evolution of the network with time, i.e.
with the number of presented pulses. This is shown in
Fig. 3 for one of the enriched detectors: In the upper panel
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Fig. 3. Evolution of the network during the
training process. The result of the network
after feeding it training pulses was moni-
tored during the training process. Upper panel:
The Events with the results from the net-
work are shown as a function of the number
of presented pulses. Left: Result from SSE-
sample (1592 keV) Right: Same for MSE-
sample (1621 keV). Lower panel: Fraction of
identified SSE’s in a given sample of reference
pulses as a function of number of presented
pulses. The shaded areas correspond to the ex-
pectation (one sigma band) obtained from the
simulation

Fig. 4. Upper Panel left: Fraction of SSE’s
in the spectrum obtained using Neural Net-
work (solid line), applying the one-parameter
cut (densely dashed line) and the expectation
from the simulation (losely dashed line). Upper
panel right: Fraction of pulses identified iden-
tically by Neural Network and one-parameter
cut. Lower panel: Measured spectrum in the
energy region of the reference pulses (data in-
dependent of the training sample). The filled
histogram corresponds to the identified SSE
pulses. The open histogram shows the spec-
trum of all events

the output of the Network for the training peaks of the
MSE and SSE lines are depicted separately as a function
of time. It is evident that the network stabilizes after ∼
400.000 presented pulses (i.e. each pulse has been passed
to the network ∼ 10 times) and is able to distinguish be-
tween the two types of events. The fact that the network is
able to identify the contamination of wrong pulses (from
the admixture of SSE’s to the MSE sample and of MSE’s
to the SSE sample) in the separate libraries gives us fur-
ther confidence in the power of the method. This is shown
in the lower panel. Here the fraction of identified SSE
Pulses within the two samples of the training pulses is
drawn as a function of presented pulses. The shaded ar-
eas give the one sigma region for the expectation obtained
from simulations (see Sect. 5). Note that the fraction of
’wrong pulses’ in the libraries is not an input parameter
to the training process. This behaviour is obtained solely

by the presentation of the reference pulses, i.e. the Neu-
ral Network itself recognizes the contamination without
previous knowledge.

From Fig. 3 it is obvious that further training of the
network is meaningless after a certain limit, the obtained
separation into MSE and SSE is not stabilizing further
after ∼ 400.000 presented pulses. The separation is fluc-
tuating around its mean value from here on. This is proba-
bly due to the fact that a non negligible amount of wrong
pulses is contained in the training samples. In principle
it would be possible to remove a large amount of this
contamination since the network identifies wrong pulses
within the samples itself. However it seemed too danger-
ous to use this method for further training since this could
give rise to sytematic effects.

Once the training process is finished, it is important to
check the obtained results with independent data not used
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Table 1. Fraction of identified SSE events in the peak areas of the Double-Escape 1592 keV line and the total absorption
1621 keV peak and their expectations from the simulation

Detector Ratio measured Ratio simulated Ratio measured Ratio simulated
Double-Escape Peak 1592 keV 1621 keV Peak

ANG2 70.9±2.7 71.7±7.7 28.3±1.7 18.0±4.8
ANG3 72.4±2.7 75.1±7.8 29.2±1.7 17.5±4.7
ANG4 72.2±2.7 74.8±7.3 29.9±1.7 18.5±3.4
ANG5 76.0±2.8 76.4±8.5 28.7±1.7 17.4±4.5

in the training process. We saved one thousand events of
each kind for every detector to do this test. The result is
seen in Fig. 5. As is evident, also for the independent data
the separation works very well (for a quantitative analysis
see Sect. 7).

In Fig. 5 it is visible that for a non-negligible frac-
tion of the pulses an output yo between 0.1 and 0.9 is
returned from the network, i.e. the pulses are not prop-
erly attributed to a definite type. The fraction of these
pulses is ∼ 20% for all the detectors. This quantity can
be identified as the efficiency of the separation. However,
since we have further information from the simulation, we
use this fact first to adjust the outcome of the networks
to the expectations from the simulation. We define a cut
value ζ so that all pulses with yo < ζ are identified as SSE.
To adjust the network to the expected result we vary ζ and
perform a least square fit for the simulated and measured
SSE ratios over the whole energy range above 500 keV.
Having found the best fit, this cut is applied to the net-
work result and thus the SSE-spectra are obtained. Note
that separation between the two type of events has been
obtained this way in Fig. 3. The result with this cut value
ζ is then used to calculate the efficiencies es and em of the
correct identification of SSE pulses and MSE pulses (see
section 7).

In the lower panel of Fig. 4 the obtained result for the
energy-region around the reference pulses is shown. Most
events in the Double-Escape-line are recognized as SSE’s.
Only a small fraction from the background contributes
to a contamination of MSE’s. Also the 1621 keV peak is
recognized correctly to consist mainly of MSE’s.

7 Comparison with the simulation and the old
parameter cut

To compare the results of simulation and measurement di-
rectly, the measured and expected ratios of SSE’s in the
spectrum as a function of energy are shown in Fig. 4 to-
gether with the result from the old one-parameter method.
It is evident that the result from the neural netwok is
satisfactory over the whole energy range above ∼ 500
keV. Only below ∼1000 keV there is a noticable differ-
ence between the neural network method and the old
method. Here the old cut yields too many SSE pulses.
Note that especially in the energy region interesting for

Table 2. Efficiencies for correct SSE and MSE identifica-
tion for the detectors of the Heidelberg-Moscow-Experiment by
neural network

Detector es em etot

ANG2 0.93±0.27 0.86±0.25 0.90±0.38
ANG3 0.91±0.26 0.84±0.24 0.87±0.37
ANG4 0.91±0.19 0.84±0.17 0.87±0.27
ANG5 0.95±0.27 0.85±0.24 0.90±0.38

0νββ-decay (2000 keV-2080 keV) the agreement of the
two techniques is very good.

In Table 1 the fraction of identified SSE’s in the
Double-Escape peak is listed for the four detectors to-
gether with the expected results from the simulation. As
evident, the measured results are in good agreement with
the expectation for the Double-Escape peak. The situa-
tion for the measured SSE fraction in the 1621 keV peak
is slightly different. Since the efficiency em for correct iden-
tification of MSE’s is not 100%, the actual measured SSE
fraction within this peak is somewhat higher than the ex-
pected fraction from the simulation. Once the real fraction
of SSE’s in a certain energy region is known through e.g.
a simulation, it is easy to calculate the efficiencies of the
recognition:

es =
1
γs

+
(

1−
(a
s

)
SSE

) 1
γs
− 1

γm(
a
s

)
SSE
−
(
a
s

)
MSE

(8)

and

em = 1−
1
γs
− 1

γm(
a
s

)
SSE
−
(
a
s

)
MSE

(9)

where γm = sMSE/SMSE is the ratio of real SSE
events in the 1621 keV peak to events identified as SSE’s
by the network within the peak, γs = sSSE/SSSE is the ac-
cording fraction for the Double-Escape-peak and (as )MSE

and (as )SSE are the simulated ratios of all events to SSE
events in the given energy region. The total efficiency etot
of the method is then given by the square root of the
product of the two single efficiencies.

The obtained efficiencies for the four networks in the
Heidelberg-Moscow-Experiment are listed in Table 2.

Obviously an efficient separation of MSE and SSE
pulses can be accomplished with Neural Networks. In prin-



6 B. Majorovits et al.: Heidelberg-Moscow-Double-Beta-Decay-Experiment

Fig. 5. Result of the trained networks tested
on independent data, i.e. on pulses which were
not used for the training process. The blank
histograms correspond to results of events from
the SSE-library (expected result: 0), the filled
histograms to events from the MSE-library
(expected result: 1). Note that the network
identifies the contamination with wrong pulses
in the refernce libraries correctly

ciple it is possible to correct the result of the network
through the known efficiencies with the relation

s =
S − (1− em)A
(es + em − 1)

. (10)

Here S is the number of SSE’s identified by the network,
A is the total number of events and s is the real amount
of SSE in the sample A. In our case the correction yields
a smaller SSE rate s then actually obtained with the neu-
ral networks S, since the number of MSE’s identified as
SSE’s is larger than the number of SSE’s identified as
MSE’s.

(1− em)(A− s) > (1− es)s. (11)

However, we decided not to make use of this correc-
tion. Since the obtained efficiencies are high, the correc-
tion would be only of the order of 30% in the case of a large
ratio a

s , as realized for total absorption peaks. The correc-
tion would be of the order of ∼10% for the expected ratio
in the 0νββ-decay energy range. The fact that we do not
apply the correction makes the use of the new technique
a conservative method.

From the ratio of identified SSE pulses in the en-
ergy region between 2000 keV and 2080 keV it is ex-
pected that the background in the calibration spectrum
can be further reduced by a factor of 2.67±0.05 which
is in good agreement with the results obtained from the
simulation which yields a reduction factor of 2.78±0.01
and the one parameter-cut, which gives a reduction by a
factor of 2.53±0.05 The slightly smaller value in the mea-
surement is the effect of the efficiencies for the recognition.
We expect a similar reduction for the Heidelberg-Moscow-
Experiment.

To finally check the compatibility of the two meth-
ods, in the right diagram of Fig. 4 we show the frac-
tion of pulses from the library which were attributed the
same type from both methods as a function of energy.
With the efficiencies given above and the efficiencies of

the old method we expect a fraction of ∼ 70 % to be iden-
tified equally. Indeed ∼75% of the events are classified
equally.

8 Conclusion

We developed a new method to distinguish between mul-
tiple scattered and single interaction events in HPGe-
detectors on the basis of Neural Networks. We showed
that this technique is capable of distinguishing between
the two types of events with a very high efficiency. The
comparison with a simulation performed for this purpose
confirms these results.
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